

Top Quark and Tau Lepton

Juerg Beringer
Lawrence Berkeley National Laboratory

Top Quark

Listings

- Encoder: Kaoru Hagiwara (KEK)
- Overseer: Jeremy Lys → Jean-Francois Arguin → TBD
- Coordinator: JB

"The top quark" review

- Tony Liss (Illinois) and Arnulf Quadt (Goettingen)
- Major revision, now with detailed coverage of LHC results
- 12 pages in big book

Figure 1: Measured and predicted $t\bar{t}$ production cross sections from Tevatron energies in $p\bar{p}$ collisions to LHC energies in $p\bar{p}$ collisions. Tevatron data points at $\sqrt{s}=1.8$ TeV are from Refs. [25] and [26]. Those at $\sqrt{s}=1.96$ TeV are from Refs. [17] and [18]. The ATLAS and CMS data points are from Refs. [20] and [22], respectively. Theory curves are generated using HATHOR [5] with input from Ref. [27] for the NLO curves and Ref. [2] for the approximate NNLO curves. Figure adapted from Ref. [19].

Highlights

New results in Listings

- 63 new measurements, including 8 from LHC
- Top mass: 173.5 ± 0.6 ± 0.8 GeV (0.6% precision!)
 - Weighted average from TEVEWWG and single CMS measurement
 - Future: TOPLHCWG and TEVEWWG will produce combined average (we are in close contact with both groups)
- MC (pole) vs $\overline{\rm MS}$ top mass from $\sigma_{\rm t\bar{t}}$ measurements
 - Discussed in top quark review
 - Separate data blocks in Listings
- New quantities in Listings
 - Spin correlation in tt production
 - Ratio of production cross section $t\bar{t}\gamma$ to $t\bar{t}$ at \sqrt{s} = 1.96 TeV
 - Single t production cross section pp collisions at √s = 7 TeV
 - $t\bar{t}$ production cross section in pp collisions at \sqrt{s} = 7 TeV

Outlook for Top

Number of new top results has been steadily increasing

	2002	2004	2006	2008	2010	2012
Papers	10	3	21	31	35	51
Measurements	16	4	29	38	47	63

Expect many more top results from LHC in the next edition

- Many preliminary LHC top results not yet published by RPP 2012 deadline
- Cross section measurements at 8 TeV, different top properties
- Hot topic: top A_{FB} and A_C
 - Expect published results from LHC for next edition

$$A_C = \frac{N(|y_t| > |y_{\bar{t}}|) - N(|y_{\bar{t}}| > |y_t|)}{N(|y_t| > |y_{\bar{t}}|) + N(|y_{\bar{t}}| > |y_t|)}$$

Tau

Listings

- Encoder: Ken Hayes (Hillsdale College)
- Overseer: Klaus Moenig (DESY)
- Coordinator: JB
- 40 new measurements from 7 papers since RPP 2010

• " τ branching fractions" review

- Ken Hayes (Hillsdale College)
- Updated for latest fit

"τ-lepton decay parameters" review

- Achim Stahl (RWTH Aachen)
- Minor updates

History of New Tau Results

Branching Fractions

- Conventional τ decays
 - 119 branching fractions
 - 31 limits
- Constrained fit determines branching fractions for 82 modes
 - 31 basis modes
 - χ² of 128.9 for 108 degrees of freedom
 - Use HFAG averages instead?
- Total uncertainty of B-factory measurements on average 3.4x smaller than for corresponding non-B-factory ones
 - ~60 times number of τ events
- 59 limits on lepton (family) or baryon number violating modes

Inconsistencies

- τ branching fractions from BaBar and Belle tend to be smaller than non-B-factory measurements
 - Originally reported in RPP 2010
 - Similar study by HFAG, arXiv 1101.5138v1 (2011)
 - Average normalized difference decreased slightly from -1.36 in RPP 2010 to -1.30
- Sizable differences for some decay modes between BaBar and Belle
- Overconsistency of leptonic branching fractions
 - Probability of smaller χ^2 is 1.3% (0.08%) for B_e (B_u)

Figure 2: Distribution of the normalized difference between the 20 B-factory measurements of conventional τ -decay branching fractions and non-B-factory measurements. The Belle and BaBar collaborations have published 11 and 9 measurements respectively.

Mode	BaBar – Belle Normalized Difference $(\#\sigma)$
$\pi^- \pi^+ \pi^- \nu_\tau \text{ (ex. } K^0)$	+1.4
$K^{-}\pi^{+}\pi^{-}\nu_{\tau} \text{ (ex. } K^{0})$	-2.9
$K^-K^+\pi^-\nu_{ au}$	-2.9
$K^-K^+K^-\nu_{ au}$	-5.4
$\eta \ K^- \nu_{\tau}$	-1.0
$\phi K^- \nu_{\tau}$	-1.3